Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Ethyl 2-formamido-2-(4-iodobenzyl)-3-(4-iodophenyl)propionate and ethyl 2-(3-bromobenzyl)-3-(3-bromo-phenyl)-2-formamidopropionate

Lakshminarasimhan Damodharan, ${ }^{\text {a }}$ Vasantha Pattabhi, ${ }^{\text {a }}$ * Manoranjan Behera ${ }^{\text {b }}$ and Sambasivarao Kotha ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025 , India, and ${ }^{\text {b }}$ Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
Correspondence e-mail: pvasantha@hotmail.com

Received 7 January 2003
Accepted 4 March 2003
Online 31 March 2003
The title compounds, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{I}_{2} \mathrm{NO}_{3}$ and $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{3}$, are derivatives of α-aminoisobutyric acid with halogen substituents at the para and meta positions, respectively. The ethoxycarbonyl and formamide side chains attached to the C_{α} atom of the molecule adopt extended and folded conformations, respectively. The crystal structures are stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{Br} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{I} \cdots \mathrm{O}$ interactions.

Comment

Recently, there has been increasing interest in the synthesis of structural variations of α-aminoisobutyric acid (Aib) with the aim of incorporating them into peptides (Karle et al., 1994; Ramesh \& Balaram, 1999; Formaggio et al., 2000). Dibenzylglycine (Dbzg) is a special structural variant of Aib (Kotha et al., 2002; Scott et al., 1997). The presence of two benzyl groups at the α position of Dbzg not only gives rigidity to the peptide backbone, but also acts as a useful vehicle for studying $\pi-\pi$ interactions (Studer \& Seebach, 1995; Damodharan, Shamaladevi et al., 2002). In this paper, we present the crystal structures of two derivatives of Dbzg with iodine and bromine substituted at the para and meta position of the benzene rings, namely ethyl 2-formamido-2-(4-iodobenzyl)-3-(4-iodophenyl)propionate, (I), and ethyl 2-(3-bromobenzyl)-3-(3-bromophenyl)-2-formamidopropionate, (II).

(1)

(II)

Compound (I) crystallizes from acetone-dichloromethane (1:1) and compound (II) crystallizes from n-propanol-di-
chloromethane (1:3), both in the $P 2_{1} / n$ space group (Fig. 1). The I and Br atoms are coplanar with their respective benzene rings. The ethoxycarbonyl and formamide side chains adopt extended and folded conformations in both compounds [C1$\mathrm{N} 1-\mathrm{C} 19-\mathrm{O} 19=2.8(8)$ and $2.1(7)^{\circ}$, and $\mathrm{C} 16-\mathrm{O} 17-\mathrm{C} 17-$ $\mathrm{C} 18=-175.8(7)$ and $-169(1)^{\circ}$ in (I) and (II), respectively].

(a)

(b)

Figure 1
The molecular structures of (a) compound (I) and (b) compound (II), showing 50% probability displacement ellipsoids and the atomic numbering schemes.

The formamide side chain is planar in both compounds. The dihedral angles between the two benzene rings are 68.9 (1) and $62.0(2)^{\circ}$ in (I) and (II), respectively. Terminal atom C18

Figure 2
Stereoview of the superposition of compounds (I) (grey) and (II) (black).

Figure 3
Stereoviews of the packing of (a) molecules of compound (I), showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions along the $a b$ plane, and (b) molecules of compound (II), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions along the $b c$ plane.
of the ethoxycarbonyl side chain of compound (I) shows high anistropic displacement parameters and in compound (II) atoms C17 and C18 show disorder. There is no significant variation in the conformations of the two compounds (Fig. 2), except for the angle between the two benzene rings and ethoxycarbonyl side chains.

A transannular hydrogen bond (Damodharan, Syed Ibrahim et al., 2002), $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 16$, connecting symmetryrelated molecules, is present in compound (II). Compound (I) is devoid of this transannular hydrogen bond due to steric clashes of the I atom at the para position with its symmetryrelated molecule. Atom N1 of the formamide side chain of (I) participates in a three-centred $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction with atoms O16 and O19 (Table 1). In compound (II), the N1$\mathrm{H} 1 \cdots \mathrm{O} 16$ hydrogen bond is bifurcated (Table 2). A C-I . . O interaction has also been observed in the packing of compound (I) (Fig. 3a); the I13‥O16(-x, $1-y,-z$) distance is 3.333 (4) \AA.

The $\mathrm{C} 7-\mathrm{Br} 7$ and $\mathrm{C} 12-\mathrm{Br} 12$ bond lengths are 1.901 (4) and 1.923 (6) Å, respectively, in compound (II), which are longer than the accepted value of $1.89 \AA$ for bromine bonded to a $\mathrm{Csp}{ }^{2}$ atom. The elongation of the $\mathrm{C} 12-\mathrm{Br} 12$ bond may be due to the electron-withdrawing nature of the Br atom (Dewar \& Schmeizing, 1969; Leser \& Rabinovich, 1978).

A $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}$ interaction is observed in the packing of compound (II) (Fig. 3b); the $\operatorname{Br} 7 \cdots \mathrm{O} 19\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ distance is 3.053 (3) \AA. Hassel \& Roming (1962) have also observed the presence of an attractive interaction between a bonded halogen atom and an O atom, and interpreted it as a charge transfer between an electron-pair donor (O, N or S) and an electron-pair acceptor.

Experimental

Compound (I) was synthesized under phase-transfer conditions (PTC) using ethyl isocyanoacetate as a glycine equivalent (see reaction Scheme below) in a four-step sequence starting from p-toluidine (Kotha \& Brahmachary, 1997, 2000). Thus, diazotization of compound (1) and subsequent iodination of the diazo derivative

with KI gave 4-iodotoluene, (2). Benzylic bromination of (2) with N-bromosuccinimide under $2,2^{\prime}$-azobisisobutyronitrile/ CCl_{4} reflux conditions gave (3). Alkylation of ethyl isocyanoacetate with (3)
under PTC conditions gave the dialkylated product (4). Hydrolysis of the coupling product was achieved by treating (4) in $\mathrm{HCl} /$ diethyl ether $/ \mathrm{H}_{2} \mathrm{O}$ solution at room temperature for a few hours to give the title formamide derivative, (I). A similar procedure was used for the synthesis of compound (II).

Compound (I)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{I}_{2} \mathrm{NO}_{3}$
$M_{r}=563.15$
Monoclinic, $P 2_{1} / n$
$a=13.982(7) \AA$
$b=8.922(5) \AA$
$c=16.533(8) \AA$
$\beta=9.976(8)^{\circ}$
$V=2059.8(18) \AA^{3}$
$Z=4$
$D_{x}=1.816 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3103 reflections
$\theta=2.3-26.2^{\circ}$
$\mu=3.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.76 \times 0.46 \times 0.29 \mathrm{~mm}$
Data collection
Bruker SMART APEX diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.203, T_{\text {max }}=0.472$
32912 measured reflections
4852 independent reflections
4008 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-11 \rightarrow 11$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0899 P)^{2}\right. \\
& +2.9260 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.47 \mathrm{e}_{\mathrm{m}}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.58 \text { e } \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.160$
$S=1.01$
4852 reflections
226 parameters
H -atom parameters constrained

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0772 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.14 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}
\end{gathered}
$$

$w R\left(F^{2}\right)=0.147$
$S=0.88$
4648 reflections
242 parameters
H -atom parameters constrained

Table 2
Hydrogen-bonding and short-contact geometry ($\AA^{\circ},^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O16	0.86	2.20	$2.620(4)$	110
C2-H2B \cdots O19	0.97	2.61	$3.205(5)$	120
C9-H9A \cdots O19	0.97	2.56	$3.095(6)$	115
N1-H1 ${ }^{\text {O O16 }}$				

Symmetry code: (i) $2-x, 1-y,-z$.

The H atoms were fixed geometrically at calculated positions $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$. The maximum electrondensity peaks are located $0.77 \AA$ from I6 and $1.09 \AA$ from Br12 in (I) and (II), respectively.

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Council of Scientific and Industrial Research and DST, India.
Hydrogen-bonding and short-contact geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 19^{\mathrm{i}}$	0.86	2.26	$2.975(5)$	141
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 19$	0.97	2.53	$3.080(6)$	116
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 17$	0.97	2.57	$2.896(5)$	100
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 19$	0.97	2.51	$3.133(6)$	122
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 16$	0.86	2.23	$2.643(5)$	110

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}-z$.

Compound (II)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{3}$	$D_{x}=1.569 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=469.17$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 4648
$a=11.380(3) \AA$	reflections
$b=14.867(3) \AA$	$\theta=2.1-29.8^{\circ}$
$c=12.525(3) \AA$	$\mu=4.10 \mathrm{~mm}^{-1}$
$\beta=110.431(4)^{\circ} \AA$	$T=293(2) \mathrm{K}$
$V=1985.8(7) \AA^{3}$	Irregular, colourless
$Z=4$	$0.43 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection
Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.272, T_{\text {max }}=0.526$
17080 measured reflections
4648 independent reflections
2163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-19 \rightarrow 19$
$l=-14 \rightarrow 16$
Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1593). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Damodharan, L., Shamaladevi, N., Pattabhi, V., Behera, M. \& Kotha, S. (2002). Acta Cryst. C58, o266-o267.
Damodharan, L., Syed Ibrahim, B., Pattabhi, V., Halder, S. \& Kotha, S. (2002). Acta Cryst. E58, o1038-o1039.
Dewar, M. J. S. \& Schmeizing, H. N. (1969). Tetrahedron, 38, 96-120.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Formaggio, F., Crisma, M., Rossi, P., Scrimin, P., Kaptein, B., Broxterman, Q. B., Kamphuis, J. \& Toniolo, C. (2000). Chem. Eur. J. 6, 4498-4504.
Hassel, O. \& Roming, C. Q. (1962). Chem. Soc. Rev. pp. 1-18.
Karle, I. L., Balaji Rao, R., Prasad, S., Kaul, R. \& Balaram, P. (1994). J. Am. Chem. Soc. 116, 10355-10361.
Kotha, S., Behera, M. \& Vinod Kumar, R. (2002). Bioorg. Med. Chem. Lett. 12, 105-107.
Kotha, S. \& Brahmachary, E. (1997). Bioorg. Med. Chem. Lett. 7, 2719-2722.
Kotha, S. \& Brahmachary, E. (2000). J. Org. Chem. 65, 1359-1365.
Leser, J. \& Rabinovich, D. (1978). Acta Cryst. B34, 2272-2280.
Ramesh, K. \& Balaram, P. (1999). Bioorg. Med. Chem. 7, 105-107.
Scott, W. L., Zhou, C., Fang, Z. \& O'Donnell, M. J. (1997). Tetrahedron Lett. 38, 3695-3698.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Studer, A. \& Seebach, D. (1995). Liebigs Ann. Chem. pp. 217-222.

